
I

J E
E

CE International Journal of Electrical, Electronics ISSN No. (Online) : 2277-2626
and Computer Engineering 1(2): 15-21(2012)

Special Edition for Best Papers of Michael Faraday IET India Summit-2012, MFIIS-12

Control Oriented LFT Modeling of a Non Linear MIMO system
Tamal Roy* and Ranjit Kumar Barai**

*MCKV Institute of Engineering, Liluah, Howrah, (WB)
**Jadavpur University, Kolkata, (WB)

(Received 15 October, 2012 Accepted 01 December, 2012)

ABSTRACT: This paper presents a procedure for parametric uncertainty modeling of a highly nonlinear multi- input
multi- output (MIMO) cross coupled system for the purpose of Linear Fractional Transformation (LFT) model
realization. A novel technique has been considered to represent the control oriented LFT modeling of linear parametric
models. A systematic approach is to find the equivalent representations of manipulation of rationally dependent
parametric matrices. Model uncertainty arises when the system gain and the parameters are not precisely known, or may
vary over a given range. One may also have unstructured uncertainties, by which one means complex parameter
variations satisfying given magnitude bounds. Linear Fractional Transformation is objects of study for robust and
Linear Parameter Varying (LPV) control. For robust control LFT model is desirable. A nonlinear strongly coupled
dynamics laboratory twin rotor MIMO system, which constitutes challenges for many classical linear control techniques,
has been consider as a candidate system. A two-degree-of-freedom (2DOF) design framework has been adopted for the
formulation of the LFT modeling.

Index Terms—Dynamic perturbation, LFT modeling, MIMO system, unstructured uncertainty.

I. INTRODUCTION

In the field of control theory linear multivariable systems is a
mature subject with a variety of successful application.
Although the nonlinear control theory is quite attractive and so
many researchers have recently showed an active interest in
the development and application of nonlinear control
methodologies.  It is very difficult to design such controller for
high level nonlinear cross coupled   multivariable dynamic
system. Robust control is inherently about model uncertainty,
particularly focusing on the implications of model uncertainty
for decisions and the model of the system has been represented
in the form of LFT. This paper concerns with the systemic
control oriented  modeling of uncertain non-linear system
whose model vary due to changes in the system configuration
and operating conditions. The differences between the
linearized mathematical model and the actual system, presence
of disturbance signal, and the model order reduction have been
considered for the model uncertainty. A highly nonlinear
strongly coupled laboratory scaled twin rotor multi-input
multi-output system has been considered as a candidate
system.
The purpose of the paper is to develop a system model to
characterize system variations as uncertainty. Model
uncertainty generally has nominal system model and the
unknown transfer function matrix. This modeling approach
leads to the system in the form of linear fractional
transformation (LFT). A general descriptor type LFT
representation of rational parametric matrices is a generalized
represented of arbitrary rationally dependent multivariate

functions in LFT-form [1]. A technique has been proposed to
model uncertain nonlinear systems whose models vary due to
changes in the system configuration and operating conditions
[2]. A unified frame work for parameter estimation problems
which arise in a system identification context. The parameters
to be estimated appear in a LFT with a known constant matrix
M [3]. A general procedure is to approximate a parametric
linear fractional representation (LFR) with a reduced order
LFR [4]. Earlier studies present a systematic approach for the
generation of uncertainty models described by LFT and report
on recently developed symbolic and numerical software to
assist the generation of low order LFT-based uncertainty
models. It contributes a systematic approach to represent a
nonlinear cross couple dynamic systems to a matrix
polynomial of any order and any number of parameters as an
LFT [5].
Physical systems are generally multi input multi output system
and maximum systems are non-linear. In non linear MIMO
system complexity is increased by the increase of input output.
Helicopter is an aircraft which is lifted and propelled by one or
more horizontal rotors consisting of two or more rotor blades.
It can take off and land vertically and to maintain a steady
hover in the air over a single point on the ground. Two degree
of freedom helicopter equipment (Twin Rotor MIMO System
developed by Feedback) available in the laboratories of the
Advanced Control Systems Research. This model is a good
multivariable control benchmark widely used in the literature.
It allows illustrating the control of helicopter mechanics with
two degrees of freedom that rotates around two directions.
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In mathematical modeling of TRMS, the system is modeled in
terms of vertical one-degree-of-freedom (1DOF), horizontal
(1DOF), and two-degree-of-freedom (2DOF) dynamics using
Newtonian as well as Lagrangian methods [6]. Stable adaptive
model for predictive control approach has been proposed for
constrained nonlinear systems. This method is known as
multistep Newton-type control strategies however, the
formulation here differs from the original one [7]. A
mathematical model of Twin Rotor Aero dynamical System
containing experimental characteristics has been used to
design the controllers for tracking [8]. Genetic modeling and
vibration control of twin rotor MIMO system has introduced
global search technique of GA is used to identify the
parameters of the TRMS based on one-step-ahead prediction
[9]. Recent study shows unknown nonlinearities of TRMS has
been estimated by neural network whose weights are
adaptively adjusted [10].
All the linear and non linear modeling of the TRMS has some
approximation is used in order to get some necessary
knowledge. Due to this approximation some uncertainty is
introduced into the system and which is unavoidable in a real
control system. All this uncertainty is lumped into a single
block. Uncertainty block affects the input – output relationship
of the LFT. This LFT modeling is essential for the robust
Control.

II. MODEL UNCERTAINTY

Most control designs are based on the use of the mathematical
modeling of the real systems. A mathematical model produces
a map from inputs to responses. The quality of the model
depends on how closely its response matches to the real
system. Since no single fixed model can respond exactly like
true plant. This discrepancy introduce due to the unmodelled
dynamics, neglecting the nonlinearities in the modeling, effects
of reduced order model and system parameter variation due to
environmental changes. This discrepancy between the derived
model and the actual plant has been considered as model
uncertainty in robust control theory [11]. Stability and
performance of the control system is very much influenced by
the model uncertainty.
The model uncertainty is classified in two categories,
disturbance signals and dynamic perturbations.  Disturbance
signals occur due to the input output disturbance, sensor noise
actuator noise, etc. Dynamic perturbations represent the
discrepancy between mathematical model and the actual
dynamics of the system
Many dynamic perturbations that may occur in different parts
of a system can, however, be lumped into one single
perturbation block ∆ , for instance, some unmodelled, high-
frequency dynamics. This uncertainty representation is
referred to as “unstructured” uncertainty.In the case of linear,
time-invariant systems, the block Δ may be represented by an
unknown transfer function matrix.
There are many different types of uncertain system model
representation [12] and the form of model to be used depends

on type of uncertainty expected and the tractability of robust
control problem corresponding to this uncertain system model.
Generation of LFT Models

Linear fractional Transformation (LFT) plays an
important role in modeling parametric uncertainty in linear
systems. LFT based model representation [11] are very useful
to model real parametric uncertainty entering rationally in the
system matrix.  These models are used in the robust control
application like H∞ control or  control.

Consider a complex matrix M as

1 2 1 211 12 ( ) ( )

21 22

p p q qM M
M C

M M
+ × + 

= ∈ 
 

(1)

and let 2 2q p
l C ×∆ ∈ and 1 1q p

u C ×∆ ∈ be two other complex

matrices. The lower LFT with respect to l∆ as

2 2 1 1( , ) : q p p q
lF M C C× ×• →

With mathematical expression
1

11 12 22 21( , ) : ( )l l l lF M M M I M M−∆ = + ∆ − ∆ (2)

provided that the inverse 1
22( )lI M −− ∆ is exists. The upper

LFT with respect to u∆ as

1 1 2 2( , ) : q p p q
uF M C C× ×• →

With
1

22 21 11 12( , ) : ( )u u u uF M M M I M M−∆ = + ∆ − ∆ (3)

also provided that the inverse 1
11( )uI M −− ∆ is  exists. Matrix

M is known as the co- efficient matrix. The lower and upper
LFT is shown in the figure.

Fig. 1. Lower LFT Representations.

Fig: 2 Lower LFT Representations

F
Fig. 2. Upper LFT Representations.
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The lower LFT representation express by the following set of
equations:

1 1 11 12 1

1 1 21 22 1

z w M M w
M

y u M M u

       
= =       

       
, (4)

1 1lu y= ∆ (5)

And the upper LFT representation express by

2 2 11 12 2

2 2 21 22 2

y u M M u
M

z w M M w

       
= =       

       
, (6)

2 2uu y= ∆ (7)

III. TWIN ROTOR MIMO SYSTEM

Among autonomous flying systems, helicopters have
particularly dynamic features. The main difficulties in
designing controllers for them follow from nonlinearities and
cross couplings. A 2-DOF model is considered, and unlike in
most of the recent works, aero dynamical forces and torques
are   introduced into the modeling of the system. The system is
interesting because it makes it possible to perform various
experiments in the field of modeling, identification and control
theory.

Figure 3 shows a laboratory model of the Twin rotor MIMO
systems (TRMS), are basically a multi inputs multi outputs
system (MIMO). In certain aspects its behavior resembles that
of a helicopter. It consists of a beam pivoted on its base in
such a way that it can move freely both in the horizontal and
vertical plane.  At the both end of the beam, there are two
propellers driven by the two dc motors.  The TRMS system
has a main and tail rotor for generating vertical and horizontal
thrust. Main rotor produces a thrust to lift the beam in vertical
plane and tail rotor produce a force to make the beam turn left
or right in a horizontal plane. The TRMS system has two
degree of freedom (2DOF) movement, one degree of freedom
(1 DOF) in the vertical plane and one degree of freedom (1
DOF) in the horizontal plane movement. The system is
equipped with a counterweight hanging from the beam, which
is used for balancing the angular momentum in steady state or
with load.

The aerodynamics forces of TRMS are controlled by varying
the speed of the motors. Therefore, supply voltages of the DC
motors are the control input of the system. It is highly non
linear system and process strong cross coupling between the
pitch and yaw axis. In this study Lagrangian mathematical
model is taken in to the consideration.

IV. LFT MODELING OF TRMS

Mathematical modeling  of TRMS, the system is modeled in
terms of vertical one-degree-of-freedom (1DOF), horizontal
(1DOF), and two-degree-of-freedom (2DOF) dynamics using
Newtonian as well as Lagrangian methods [6]. Lagrangian
based mathematical model is used for the linear fractional
transformation (LFT) modeling. Different types of sensors are
used in the actual system so disturbance signals introduce into
the system. The difference between the mathematical model
and the actual model is due to the presence of the dynamical
perturbation and linearization of the non-linearity.  This

uncertainty can be lumped into a block ∆ .

1 2

1 1 2 2

1 2 2

1 2 2

2 2 2 2
1 2 3 1

1

2
2 1

1 2

( ( ) ( ) sin( ) cos(

[ cos( ) sin( )] [2( )sin( )0

)

sin ) cos( )

0

(

v v T T v T T v

T T v T

T T h

v

T T v T T v

T v

v vh h

v v

J cos J sin h m h m J m l h m l h

m l h m l h J

m l h m l h J Jk

k

J

   





  






  
 
 

+ + −   
+ +

+ + + + −
 

− + 

   
   

 







1 1 2 2

2
1 2

,

,

cos( )]

[ ]sin( ) cos( ) [ cos( ) sin( )]

0 cos( ) 1 0

0 0 1

v h v

v v h T T v T T v

prop hm v h

prop vt v

J J g m l m l

Mk

Mk

  

    

 


 
 

− + +  
−       

+ =       −       

 






(8)

,

,
,

( , ) ( , , ) ( , ) prop hh
h v h v h v h v

prop vv

M
D C g

M


       


  

+ + =   
   


 


(9)

After linearization of the (8) under the assumptions of a
small deviation of the horizontal and vertical position, one
obtain the following equation

1 2 2

2 2

2

2 2

2 2
1 3

,

,

1 2

( ) 0

0

0 0 0 1 0

0 0 0 1

T T h h h

v v v

p

T T

rop hh m h

T T prop vv t

T

v

T

k

k

Mk

J h m h m J m l h

m l

gm l Mk

h J J

 
 

 
 

     
+     

     

−          
+ + =       

 + + + −
 



− +  

 −          

 
 




(10)

D C E Kd Tp  + + + =  (11)
1 1 1 1D C D E D Kd TpD   − −− −= − − − +  (12)

Fig. 3. Twin Rotor MIMO system. Fig. 4. Block diagram of Twin rotor MIMO system.
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Based on the practical considerations, the variations of the
moment of inertia of the free-free beam , moment of inertia
of the counterbalance beam and viscous friction co-

efficient 1k and 2k are considered. It is assumed that the

moments of inertia are constants but with possible relative
error of 30% around the nominal values; similarly, the friction
coefficients may have with 15% relative errors [13].
Therefore, the actual moments of inertia are presented as

(1 ), 1, 2i i i JiJ J p i= + = (13)

Where iJ is the nominal value of the corresponding moment

of inertia, 0.3ip = is the maximum relative uncertainty in each

of these moments and 1 1, 1, 2.Ji i− ≤ ≤ =

p JD D D= + ∆ (14)

where the elements D are determine by the nominal values of
the moment of inertia.

2 1 11 2 2

2 2
2 2

2 2
3 11

21 2

00
,

00

T p JT T T

p J
p JT T

J h m h m J m l h J
D D and

Jm l h J J





 + + + −    
 = = ∆ =   
   − +      

The matrix 1D− can be represented as an upper linear
fractional transformation (LFT).

22 21 11 12

1 1
2( , ) ( )J J J J JJ JU JD F Q Q Q I Q Q−− ∆ ∆= ∆ = + − (15)

2111 12 22

1 1 1 1
, ,p J pJ J JQ D D Q D Q andD D Q D

− − − −
= − = = − =

11 12

21 22

1 1

1 1

J J p

p

J
J J

D D D

D

Q Q
Q

DQ DQ

− −

− −

  
 = = 
  −  

−
(16)

Nominal values of the TRMS are taken from the Feedback
instrument manuals [14].
Let us now consider the uncertainties of the friction co-
efficient. Here and are viscous friction coefficients in
horizontal and vertical position of the TRMS.

Therefore, the actual viscous friction coefficient are presented
as

(1 ), 1, 2
ii i i kk k s i= + = (17)

where ik is the nominal value of the corresponding viscous

friction, 0.15is = is the maximum relative uncertainty in each

of these coefficient and 1 1, 1, 2.
ik i− ≤ ≤ =

s kC C C= + ∆ (18)

where the elements C are determine by the nominal  values
of the viscous friction coefficient.

1

2

1 1 1

2 2 2

00 0
,

00 0

k

s k
k

k k s
C C and

k k s





     
= = ∆ =     

         

The matrix 1C− can be represented as an upper linear fractional
transformation (LFT).

22 21 11 12

1 1
2( , ) ( )U k k k k k k kkF Q Q Q I Q QC− −+ ∆ ∆= ∆ = − (17)

11 12 21 22

1 11 1
, ,s sk k k kQ C C Q C Q andC C Q C

− − − −
= − = = − =

11 12

21 22

1

1

1

1

s

s

k k

k
k k

Q Q C C C
Q

Q Q C C C

−

−

−

−

   − = = 
   −   

(18)

To represent the TRMS model as a LFT of the real uncertain

parameters
1J ,

2J and
1k ,

2k .We first extract out the

uncertain parameters and then denote the inputs and outputs of

J∆ and K∆ as ,J Ky y and ,J Ku u respectively.

11

1 1 ( )
p ji

k
p

D D uy

Tp Kd v

D

D D D

−

−

−

−

      =    − +   − 

−

 


(19a)

1 1

1 1

k s k

k
s

y C C C u

v C C C 

− −

− −

 −    =        − 


(19b)

j j ju y= ∆ (20a)

Table -1
Nominal values of the parameters

Symbol(Unit)    value Symbol(Unit)    value

( )

( )

( )

( )

( )

( )

( )

( )

t

tr

ts

m

mr

ms

b

cb

m kg

m kg

m kg

m kg

m kg

m kg

m kg

m kg

0.015

0.221

0.119

0.014

0.236

0.219

0.022

0.068 
( )

( )

( )

( )

( )

( )

( )

( )

h

t

m

b

cb

ms

ts

m kg

l m

l m

l m

l m

r m

r m

h m

0.014 

0.282

0.246

0.290

0.276

0.155

0.100

0.240

Fig.5. System block diagram with uncertain parameter
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k k ku y= ∆ (20b)

The TRMS state vector [ ]2 3 41

T
x x x xx = is defined

by 1 2 3 4, , ,h v h vx x x x   = = = = 
.

Hence [ ] [ ]1 2 3 4,
T T

x x x x = =    

Output
1p h hy k = (21a)

2p v vy k = (21b)

Now introducing the output vector
1 2

T

p p py y y =  
So p py E = (22)

Where
0

0
h

p
v

k
E

k

 
=  

 
From the state equations of the TRMS the input output

relationship is summarized as

1 1

2 2

3 3

4 4

j j

k k

p

x x

x x

x x

x x

y u

y u

y p

dy

   
   
   
   
   
   = Π   
   
   
   
   
     




 (23)

2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 11

1 1 1 1 1 1 11

1 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

p s

p s

s

p

I

D E D C D D D C C D T D K

D E D C D D D C C D T D K

C C C

E

I

× × × × × ×
− − − − − − −−

− − − − − − −−

− −

× × × ×

× × × × ×

× × × × × ×

 
 
− − − − 

 
− − − − Π =  

− 
 
 
  

0

0
j j j

k k k

u y

u y

∆     
=     ∆     

(24)

The open loop model of the TRMS has four

inputs ( ), , ,j ku u p d and four outputs ( ), , ,i k py y y y
.

j j

k k
trms

p

y u

y u
G

y p

y d

   
   
   =
   
   
   

(25)

The state space representation of the TRMS is

1 2

1 11 12

2 21 22

trms

A B B

G C D D

C D D

 
 =  
  

The input output relation of the perturbed TRMS is described
by the upper LFT

( , )p
U trms trms

y p
F G

y d

   
= ∆   

   
(26)

with the diagonal, uncertain matrix
0

0
J

trms
k

∆ 
∆ =  ∆ 

(27)

Now consider the model of motors of the twin rotor MIMO
system. From the Feedback instrument manuals consider the
linear transfer function of the tail and main motors are

1

1 0.3842 1
tr

tr
tr

K
G

T s s
= =

+ +
(28a)

1

1 1.432 1
mr

mr
mr

K
G

T s s
= =

+ +
(28b)

It is assumed that the actual gain coefficient trK and mrK are

constant with relative error 10% around their nominal values

and the time constants trT and mrT with relative error 20%

[13 ].
The uncertain transfer function the tail and main motor

(1 ) trtr tr trG w G= + (29a)

(1 ) mrmr mr mrG w G= + (29b)

Fig.6. LFT representation of perturbed
Two input two output systems
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Fig: 7 Singular values of the Twin rotor MIMO system
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.
Where 1, 1tr mr ≤ ≤ trW and mrW are uncertainty weights.

Transfer function of the weights trW and mrW are

10 4.2

89.6tr

s
W

s

+=
+

(30a)

10 4

99.6mr

s
W

s

+=
+

(30b)

Introducing the input vector [ ]1 2

T
u u u= than

2( )r r rp G I w u= + ∆ .

Where 00
,

00

tr tr
r r

mr

wG
G w

wG

   
= =   

   
and

0

0
tr

r
mr




 
∆ =  

 
Let the input and output of the uncertainty block denoted

by tru , mru and try , mry respectively.

[ ] [ ],
T T

r tr mr r tr mru u u y y y= =
Frequency response of the main motor and the tail motor of the
TRMS is given in figure 8 and figure 9 respectively.

Now the motor model becomes
r r

m

y u
G

p u

   
=   

   
(31)

r r ru y= ∆ …(32)

Output of the perturbed motor is supplying the propulsive

force to the perturbed TRMS. Note that the r∆ is a complex

uncertainty, while J Kand∆ ∆ are real uncertainties.

The model of the total Twin Rotor MIMO system is given by
the equations given below

r r

j j

sysk k

p

y u

y u

Gy u

y u

y d

   
   
   
   =
   
   
      

(33)

Where sysG is determined by the matrices mG and trmsG .

( , )p
U sys

y u
F G

y d

   
= ∆   

   
(34)

With the diagonal matrix
0 0

0 0

0 0

r

j

k

∆ 
 ∆ = ∆ 
 ∆ 

(35)
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Fig. 8. Frequency response of the main motor.
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Fig. 9. Frequency response of the tail motor.

Fig. 10. LFT representation of the perturbed.
motors.

Fig.11. Uncertainty modeling of Twin Rotor MIMO
system with motors (main and tail motor).

Fig. 12. LFT representation of TRMS system with
uncertainty.
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V. DISCUSSION

This paper contributes an excellent methodology to represent
the model uncertainties due to the difference between the
linearized mathematical model and the actual system.
In modeling parametric uncertainties in linear systems the
linear fractional transformation (LFT) plays an important
role. LFT-based representations are useful to model real
parametric uncertainties entering rationally in the system
matrices. These models are ready to be used in robust control
tools.
The laboratory model of the Twin rotor MIMO systems
(TRMS), are basically a multi inputs multi outputs system
(MIMO) and in certain aspects its behavior resembles that of a
helicopter.
The practical helicopter has three degree of freedom (DOF)
movement but the TRMS system has two degree of freedom
(2DOF) movement, one degree of freedom (1 DOF) in the
vertical plane and one degree of freedom (1 DOF) in the
horizontal plane movement.
The input output relation of the perturbed TRMS is described
by the upper LFT. In LFT modeling of system, all the
unstructured uncertainty considers in a single block which
may be represented by an unknown transfer function matrix
and is known as an uncertainty matrix. The LFT model derived
using this approach has the advantage of being physically
meaningful and is able to accurately represent the uncertain
nonlinear model. This LFT modeling is adopted in the robust
control study for uncertainty modeling. LFT modeling of
TRMS is essential for the H∞

controller design.

The results obtain by linearized model are valid only for
sufficient small-angle movement in the horizontal and the
vertical plane.
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